Тема 8. Векторы и матрицы

8.1. Оси и гиперплоскости, ортогональные осям

Из школьного курса физики известно понятие вектора — направленного отрезка. Например, векторами представляются скорости или силы.

Векторы задаются координатами их концевой точки. Рассмотрим в R^3 два вектора: $\pmb{a}=(a_1,\,a_2,\,a_3),\,\pmb{b}=(b_1,\,b_2,\,b_3).$ (Векторы будем обозначать **полужирным** шрифтом.) Над векторами можно выполнять некоторые алгебраические операции. Например, умножать вектор \pmb{a} на число t, складывать векторы \pmb{a} и \pmb{b} : $t\pmb{a}=(ta_1,\,ta_2,\,ta_3),\,\pmb{a}+\pmb{b}=(a_1+b_1,\,a_2+b_2,\,a_3+b_3).$

В R^n также удобно использовать векторную символику. Например, n-мерный аналог ocu (прямой линии, проходящей через начало координат в R^3), определяется следующим образом: n-мерной ocbo c направляющим вектором $\mathbf{a}=(a_1,a_2,...,a_n)$ называется множество точек в R^n , координаты которых удовлетворяют условию $t\mathbf{a}=(ta_1,ta_2,...,ta_n)$, где числовой параметр t пробегает все действительные значения.

Длина вектора а определяется формулой $|a| = \sqrt{a_1^2 + \ldots + a_n^2}$. Множество концевых точек всех векторов длины r образуют в R^n n-мерную сферу радиуса r. Произвольное направление (ось) в пространстве R^n задаётся выбором некоторой точки c на сфере радиуса 1: |c| = 1. Необходимо отметить, что то же самое направление задаётся также и вектором -c.

Ещё одной алгебраической операцией над векторами является *скалярное произведение*: паре векторов a и b сопоставляется действительное число (скаляр), вычисляемое по формуле

$$\langle \boldsymbol{a}, \boldsymbol{b} \rangle = a_1 b_1 + a_2 b_2 + \ldots + a_n b_n.$$

Многомерным обобщением понятия перпендикулярности векторов на плоскости или в трёхмерном пространстве является ортогональность n-мерных векторов.

Определение. Векторы \boldsymbol{a} и \boldsymbol{b} называются *ортогональными*, если $\langle \boldsymbol{a}, \boldsymbol{b} \rangle = 0$.

Используя понятие ортогональности, определим в R^n множество точек, которое служит обобщением плоскости, проходящей через начало координат в трёхмерном пространстве.

Определение. Подпространством, ортогональным к вектору a, называется множество всех точек $x = (x_1, ..., x_n)$, координаты которых удовлетворяют условию $\langle a, x \rangle = a_1 x_1 + ... + a_n x_n = 0$.

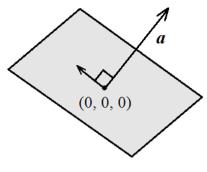


Рис. 1

Иначе говоря, подпространство, ортогональное к вектору a, образовано концами всех векторов, которые ортогональны заданному вектору a (см. рис. 1 для n = 3).

Согласно приведённому определению, любое подпространство содержит начало координат (0, ..., 0). Теперь рассмотрим множества точек в \mathbb{R}^n , которые получаются из подпространств сдвигами (параллельными переносами). Они называются гиперплоскостями.

Определение. Гиперплоскостью, ортогональной к вектору a и проходящей через точку $b = (b_1, ..., b_n)$, называется множество точек $x = (x_1, ..., x_n)$, удовлетворяющих условию

$$\langle \boldsymbol{a}, \boldsymbol{x} - \boldsymbol{b} \rangle = 0$$
 или $\langle \boldsymbol{a}, \boldsymbol{x} \rangle - \langle \boldsymbol{a}, \boldsymbol{b} \rangle = 0$.

Очевидно, что точка $m{b}$ лежит на гиперплоскости: $\langle \pmb{a}, \pmb{b} - \pmb{b} \rangle = \langle \pmb{a}, \pmb{0} \rangle = 0$. Можно представлять себе, что начало координат $m{0}$ перемещается в точку $m{b}$ (рис. 2).

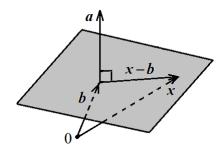


Рис. 2

Положив $c=\langle \pmb{a},\pmb{b} \rangle$, получим ещё одно уравнение, задающее гиперплоскость:

$$\langle \boldsymbol{a}, \boldsymbol{x} \rangle - c = 0$$
 или $\langle \boldsymbol{a}, \boldsymbol{x} \rangle = c$. (1)

В координатной форме это уравнение имеет вид

$$a_1 x_1 + \ldots + a_n x_n = c$$
.

Гиперплоскость, заданная формулой (1), служит общей границей двух полупространств:

$$a_1 x_1 + \ldots + a_n x_n \ge c$$
 $u \quad a_1 x_1 + \ldots + a_n x_n \le c$.

Очевидно, что отдельные точки или оси при n>1, имеют нулевой n-мерный объём. Объём полупространств бесконечен. А вот пересечения полупространств являются, пожалуй, самыми простыми множествами в R^n , n-мерный объём которых больше 0 (и конечен). Почему самыми простыми? Потому, что функции n переменных, участвующие в неравенствах, задающих полупространства, представляют собой функции очень простого вида — линейные комбинации координат.

Рассмотрим три примера множеств из пространства \mathbb{R}^n , которые представляются в виде пересечения нескольких полупространств.

Слой в R^n (полоса в R^2) определяется как пересечение двух полупространств:

$$a_1 x_1 + \ldots + a_n x_n \ge c_1$$
, $a_1 x_1 + \ldots + a_n x_n \le c_2$, где $c_1 < c_2$.

Единичный n-мерный куб есть пересечение 2n полупространств:

$$x_1 \ge 0$$
, $x_1 \le 1$, ..., $x_n \ge 0$, $x_n \le 1$.

Симплекс представляет собой пересечение (n+1) полупространства:

$$x_1 \ge 0$$
, $x_2 \ge 0$, ..., $x_n \ge 0$, $x_1 + x_2 + ... + x_n \le 1$.

Вершинами симплекса служат точки с координатами

$$(1,0,0,\ldots,0),$$

 $(0,1,0,\ldots,0),$
 \vdots
 $(0,0,0,\ldots,1),$
 $(0,0,0,\ldots,0).$

Поскольку расстояние между точками ${\pmb a}=(a_1,...,a_n)$ и ${\pmb b}=(b_1,...,b_n)$ определяется как $|{\pmb a}-{\pmb b}|$, видим, что расстояния между вершинами симплекса, ни одна из которых не является началом координат, равно $\sqrt{2}$, а расстояние от каждой из других вершин до начала координат равно 1 (см. задачу 8.4).

8.2. Матричное исчисление

Наряду с векторами, матрицы служат важным математическим инструментом, применяемым для работы с многомерным пространством и функциями многих переменных.

Определение. *Матрицей* **A** называется прямоугольная таблица с n строками и m столбцами, ячейки которой заполнены действительными числами. Число, находящееся в i-й строке $(i=1,\ldots,n)$ и j-м столбце $(j=1,\ldots,m)$ обозначается через a_{ij} (рис. 3). Говорят, что матрица **A** имеет размерность $n \times m$.

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix}$$

Рис. 3

Если n=m, то матрица называется $\kappa вадратной$. Вектор с n компонентами — частный случай матрицы размерности $n \times 1$.

Внимание: в матричных формулах под вектором всегда понимается вектор-столбец:

$$\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

Определение. *Транспонированной матрицей* \mathbf{A}^T называется матрица, чьи столбцы (при сохранении их порядка) служат строками матрицы \mathbf{A} .

В частности, a^T — это вектор—строка:

$$\boldsymbol{a}^T = (a_1 \, a_2 \dots \, a_n).$$

Так же, как и векторы, матрицы можно поэлементно умножать на константу. Матрицы одинаковой размерности можно поэлементно складывать. Важнейшей операцией в матричном исчислении является умножение матриц.

Определение. Произведением ($n \times l$)—матрицы **A** на ($l \times m$)—матрицу **B** называется ($n \times m$)—матрица **C**, элементы которой вычисляются по формуле

$$c_{ij} = \sum_{k=1}^{l} a_{ik} b_{kj}.$$

Эта формула означает, что элемент c_{ij} матрицы \mathbf{C} вычисляется как скалярное произведение i-й строки матрицы \mathbf{A} и j-го столбца матрицы \mathbf{B} (рис. 4).

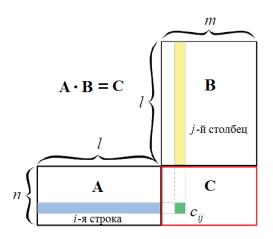


Рис. 4

Упражнение. Перемножьте матрицы
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
 и $\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 3 & 0 \end{pmatrix}$.

Отметим, что скалярное произведение $\langle a,b \rangle$ записывается в матричной форме как a^Tb . В частности, $\langle a,a \rangle = a^Ta = |a|^2$.

Свойства умножения матриц

1) Ассоциативность: (AB)C = A(BC);

2) Дистрибутивность: (A+B)C = AC+BC;

3) $(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$.

Однако в общем случае умножение матриц не является коммутативным: $AB \neq BA$.

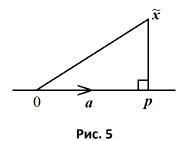
Упражнение. Придумайте пример некоммутирующих матриц размерности 2 x 2.

8.3. Расстояние от точки до гиперплоскости

Применяя матричные операции, выведем важные формулы, позволяющие рассчитать: а) длину (со знаком) вектора проекции произвольной точки пространства \mathbb{R}^n на заданную ось;

б) расстояние (со знаком) от произвольной точки пространства \mathbb{R}^n до заданной гиперплоскости.

Обозначим через \widetilde{x} точку, для которой ищется длина вектора проекции p (рис. 5). Представим вектор \widetilde{x} как сумму вектора проекции p на ось с направляющим вектором a и вектора $\widetilde{x} - p$, ортогонального данной оси: $\widetilde{x} = p + (\widetilde{x} - p)$.



Легко убедиться, что длина вектора a//a / равна 1. Действительно,

$$|a/|a|| = \sqrt{a_1^2/|a|^2 + ... + a_n^2/|a|^2} = \sqrt{a_1^2 + ... + a_n^2}/|a| = 1.$$

Поэтому $p=\widetilde{t}\,a\,//a\,/$, где $\widetilde{t}\,$ — искомая длина (со знаком) вектора p. Умножая на a^T обе части равенства $\widetilde{x}=p+(\widetilde{x}-p)$ и используя дистрибутивность матричного умножения с учётом ортогональности векторов a и $\widetilde{x}-p$, получим соотношение

$$\boldsymbol{a}^T \widetilde{\boldsymbol{x}} = \boldsymbol{a}^T \boldsymbol{p} + \boldsymbol{a}^T (\widetilde{\boldsymbol{x}} - \boldsymbol{p}) = \boldsymbol{a}^T \widetilde{\boldsymbol{t}} \boldsymbol{a} / |\boldsymbol{a}| + 0 = \widetilde{\boldsymbol{t}} / |\boldsymbol{a}|^2 / |\boldsymbol{a}| = \widetilde{\boldsymbol{t}} / |\boldsymbol{a}|.$$

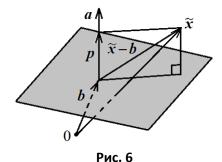
Из него выводим, что

$$\widetilde{t} = \frac{a^T \widetilde{x}}{|a|} = \frac{\langle a, \widetilde{x} \rangle}{|a|}.$$
 (2)

В частности, если /a/=1, то $\widetilde{t}=\langle a,\widetilde{x}\rangle$. Таким образом, длина вектора проекции точки \widetilde{x} на ось, заданную вектором длины 1, равна скалярному произведению \widetilde{x} и этого вектора.

Упражнение. Найдите длину вектора проекции точки с координатами (5, 5) на плоскости на ось с направляющим вектором (3, -4).

Теперь вычислим расстояние от точки \widetilde{x} до гиперплоскости, заданной уравнением $\langle a, x-b \rangle = 0$. Перенесём начало координат в точку b. В новой системе координат искомое расстояние (со знаком) \widetilde{r} совпадает с длиной вектора p — проекции вектора $\widetilde{x}-b$ на ось с направляющим вектором a (рис. 6).



Поэтому, применяя формулу (2), выводим, что

$$\widetilde{r} = \frac{\langle \boldsymbol{a}, \widetilde{\boldsymbol{x}} - \boldsymbol{b} \rangle}{\langle \boldsymbol{a} \rangle} = \frac{\langle \boldsymbol{a}, \widetilde{\boldsymbol{x}} \rangle - c}{\langle \boldsymbol{a} \rangle}, \quad \text{где } c = \langle \boldsymbol{a}, \boldsymbol{b} \rangle.$$
 (3)

Сравнивая числитель дроби из (3) с формулой (1), задающей уравнение гиперплоскости, видим, что для подсчёта числителя дроби надо подставить вектор \tilde{x} в левую часть уравнения гиперплоскости (1).

Упражнение. Найдите расстояние (со знаком) от точки с координатами (1, 2, 3) до плоскости, заданной уравнением $x_1 + x_2 - x_3 - 3 = 0$.

Задачи для самостоятельного решения

- 8.1. Найти координату проекции точки (1,2,3,4) на ось с направляющим вектором (1,1,1,1).
- 8.2. Найти расстояние от точки с координатами (8, 6) на плоскости до прямой линии, заданной уравнением $4x_1 + 3x_2 = 15$.
- 8.3. Лежат ли точки с координатами (0,0,0,7) и (1,2,3,4) по одну или по разные стороны от гиперплоскости $x_1 + x_2 + x_3 + x_4 = 8$? Какая из них расположена ближе к гиперплоскости?
- 8.4. Доказать тождество $(\mathbf{AB})^T = \mathbf{B}^T \mathbf{A}^T$.
- 8.5*. Доказать, что в пространстве R^n имеются ровно 2 точки, расстояние от которых до всех вершин симплекса, кроме начала координат, равно $\sqrt{2}$. Найти координаты этих точек.
- 8.6*. Привести координаты двух ортогональных между собой ненулевых векторов из R^3 , которые также ортогональны вектору (1,1,1).