Тема 3. Экспонента и логарифм

3.1. Непрерывная ставка сложных процентов

Капитализация банковского вклада. Представим, что вкладчик имеет возможность поместить определённую сумму (скажем, 1 миллион рублей) в банк по ставке 100% годовых. (Эх, где бы найти такой банк?) Предположим, что условия размещения вклада допускают закрытие вклада в любой момент без потери процентов.

Вкладчик решил снять деньги вместе с процентами через полгода, а затем снятую сумму положить ещё на полгода на тех же условиях. Сколько тогда он будет иметь в конце года для вклада в 1 миллион рублей? Давайте подсчитаем:

```
через полгода — 1 млн · (1 + 0.5) = 1.5 млн;
через год — 1.5 млн · (1 + 0.5) = 1 млн · (1 + 0.5)^2 = 2.25 млн.
```

А сколько он получит, если станет снимать деньги с процентами каждые 4 месяца? Вычисляем:

```
через 4 месяца — 1 млн · (1 + 1/3);
через 8 месяцев — 1 млн · (1 + 1/3)^2;
через год — 1 млн · (1 + 1/3)^3 \approx 2,37 млн.
```

А если снимать деньги каждый месяц? Аналогично находим: $1 \text{ млн} \cdot (1 + 1/12)^{12} \approx 2,613 \text{ млн}$. Такой доход называется доходом с ежемесячной капитализацией процентов.

А если снимать деньги каждый день, час, минуту, ...? Из чисто математического интереса находим, что итоговая сумма в конце года ограничена величиной

1 млн
$$\cdot \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = 1$$
 млн $\cdot e \approx 2,718282$ млн.

Определение. Число e — это предел числовой последовательности $y_n = (1 + 1/n)^n$. Его можно интерпретировать как максимальный коэффициент увеличения вклада для ставки 100%.

В свою очередь, для годовой ставки ($x \cdot 100$)% аналогично выводим, что максимальный коэффициент увеличения вклада равен

$$\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n.$$

Этот предел, как функция аргумента x, обозначается через $\exp(x)$ (или кратко e^x) и называется экспонентой. Итак, по определению

$$e^{x} = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^{n}. \tag{1}$$

В частности, для ставки 10% имеем $\lim_{n\to\infty} (1+0,1/n)^n = e^{0,1} \approx 1,1052$. Реальная ежемесячная капитализация дает почти такой же коэффициент увеличения вклада: $(1+0,1/12)^{12} \approx 1,1047$, т. е. годовой процент с ежемесячной капитализацией равен 10,47%.

Упражнение. Найдите $e^{0.05}$ и готовой процент с ежемесячной капитализацией для ставки 5%. (*Указание*. Используйте встроенную в Excel функцию EXP.)

 $^{^{1}}$ Реальные банки не позволяют капитализировать проценты чаще, чем один раз в месяц.

Варьируя значение переменной x в формуле (1), получим возрастающую функцию $y=e^x$, график которой изображён рис. 1.

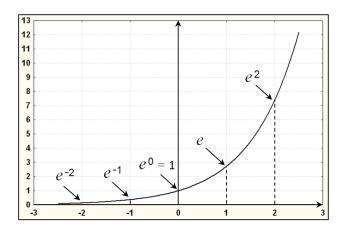


Рис. 1

При увеличении x экспонента очень быстро растёт $e^2 \approx 7,389$; $e^5 \approx 148,4$; $e^7 \approx 1096,6$.

Основное свойство экспоненты

$$e^a \cdot e^b = e^{a+b}. (2)$$

Поскольку $e^0=1$, то из формулы (2) для любого x следует равенство $e^{-x}\cdot e^x=e^0=1$. Таким образом, $e^{-x}=1/e^x$. Применяя последнюю формулу, видим, что последовательность $y_n=e^{-n}$ при $n\to\infty$ сходится к нулю, причём очень быстро: уже $e^{-7}<0$,001.

Альтернативным определением экспоненты является следующий предел:

$$e^{x} = \lim_{n \to \infty} \left(1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} \right), \tag{3}$$

где $n! = 1 \cdot 2 \cdot ... \cdot n$ — факториал от натурального числа n.

Упражнение. Вычислите приближённо значение $e^{0.05}$ на основе формулы (3) для n=10. (Указание. Используйте функцию ФАКТР [FACT] из Excel.)

3.2. Натуральный логарифм

По определению *натуральным логарифмом* называется функция обратная к экспоненте. Она обозначается как $\ln(x)$ (от латинского *logarithmus naturalis*). Ради краткости аргумент логарифма обычно не заключают в скобки и пишут $\ln x$. Таким образом,

$$\ln(\exp(x)) = \ln e^x = x$$
.

График натурального логарифма изображён на рис. 2. Он получается симметричным отражением графика экспоненты $y=e^x$ относительно прямой y=x. Логарифм определён только при x>0. Функция $y=\ln x$ неограниченно возрастает при увеличении аргумента x. Однако растёт она очень медленно: $\ln 1=0$; $\ln 10\approx 2,303$; $\ln 100\approx 4,605$; $\ln 1000000\approx 13,82$. Отметим также, что если аргумент x приближается к нулю, то функция $\ln x \to -\infty$ (см. рис. 2).

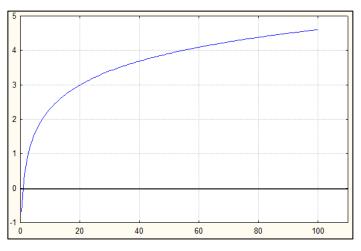


Рис. 2

Логарифм обладает следующим свойством: для любых действительных чисел a>0 и b>0 верно равенство

$$ln(a \cdot b) = ln a + ln b.$$
(4)

Доказательство. Так как экспонента является обратной функцией для натурального логарифма, то $\exp(\ln(x)) = e^{\ln x} = x$. Применяя основное свойство экспоненты (2), получаем:

$$\ln(a \cdot b) = \ln(e^{\ln a} \cdot e^{\ln b}) = \ln(e^{\ln a + \ln b}) = \ln a + \ln b,$$

что и требовалось доказать.

Упражнение. Вычислите приближённо натуральный логарифм числа, записываемого в виде единицы с тысячью нулями. (Натуральный логарифм в Excel называется LN.)

Исторически логарифмы был придуманы для облегчения трудоёмкой процедуры перемножения больших чисел. Например, пусть требуется перемножить числа 123456789 и 987654321. По таблице находим их натуральные логарифмы:

$$\ln 123456789 \approx 18,6314$$
, $\ln 987654321 \approx 20,7108$.

Отсюда согласно формуле (4) имеем:

 $\ln(123456789 \cdot 987654321) = \ln 123456789 + \ln 987654321 \approx 18,6314 + 20,7108 = 39,3422.$

Наконец, находим в таблице число, имеющее натуральный логарифм 39,3422. Это $1,2193 \cdot 10^{17}$.

Первые таблицы логарифмов появились в Шотландии в 17 веке. Джон Непер (John Napier) опубликовал в Эдинбурге в 1614 году сочинение под названием «Описание удивительной таблицы логарифмов». Непер писал: «Я всегда старался, насколько позволяли мои силы и способности, освободить людей от трудности и скуки вычислений, докучливость которых обыкновенно отпугивает очень многих от изучения математики».

Используя экспоненту и натуральный логарифм, можно строго определить известную из школьного курса алгебры показательную функцию a^x , где a — произвольное положительное действительное число, следующей формулой

$$a^x = e^{x \ln a}. ag{5}$$

При a>1 график функции $y=a^x$ отличается от графика $y=e^x$ лишь сжатием (растяжением) вдоль горизонтальной оси в $\ln a$ раз.

С натуральным логарифмом связан один замечательный предел. Ранее в разделе 2.3 изучалась числовая последовательность

$$z_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$$
.

Было установлено, что $z_n \to \infty$ при $n \to \infty$, но не было выяснено, с какой скоростью растёт z_n . Оказывается, последовательность $\{z_n\}$ растёт со скоростью $\ln n$. Точнее говоря,

$$\lim_{n \to \infty} (z_n - \ln n) = \gamma \approx 0.577,\tag{6}$$

где γ — постоянная Эйлера — Маскерони. Неизвестно, является ли γ рациональным числом, однако доказано, что если γ — обыкновенная дробь, то её знаменатель больше 10^{242080} .

Упражнение. Напишите программу на Visual Basic для приближённого вычисления постоянной Эйлера — Маскерони γ . Возьмите $n=1\,000\,000$.

Предупреждение. В отличие от Excel функция $\ln x$ на языке Visual Basic называется $\log(x)$.

3.3. Графики некоторых функций, содержащих экспоненту

Сначала построим график функции $y=e^{-x}$. Этот график получается симметричным отражением графика экспоненты $y=e^x$ относительно вертикальной координатной оси (рис. 3). При возрастании x функция e^{-x} быстро приближается к 0.

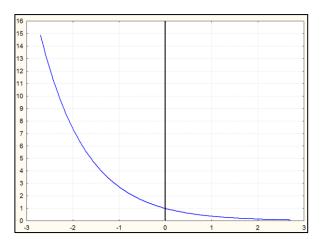


Рис. 3

Упражнение. Постройте без Excel графики функций:

a)
$$y = 1 - e^{-x}$$
;

6)
$$y = e^{-|x|}$$
;

B)
$$y = \frac{e^{-x} + e^x}{2}$$
.

Для построения графика из пункта в) надо при каждом x сложить значения функций e^{-x} и e^x , затем разделить сумму на 2 (рис. 4). Именно такую форму (а вовсе не параболу) принимает провисающая корабельная цепь или электрический провод линии высоковольтных передач.

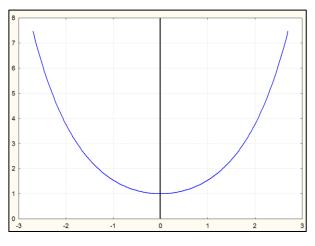
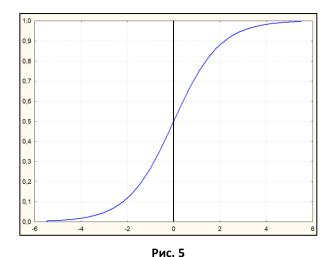


Рис. 4

В заключение построим график логистической функции, задаваемой формулой

$$y = \frac{1}{1 + e^{-x}}.$$

Она имеет *S*-образную форму (рис. 5). Из всех кривых такой формы логистическая кривая, пожалуй, задаётся наиболее простой формулой. Если аргумент x возрастает, то логистическая функция приближается к 1. Если аргумент x убывает, то она приближается к 0.



Задачи для самостоятельного решения

- 3.1. Построить с помощью Excel график функции $y = x^3 e^{-x}$ на отрезке [-1, 9] с шагом 0,01. Найти значение аргумента, при котором эта функция принимает наибольшее значение.
- 3.2. Вывести формулу и построить с шагом 0,001 на (0, 1) график обратной функции к логистической кривой. Как ведёт себя график при приближении аргумента функции к 0 и 1?
- 3.3*. Пусть k произвольное натуральное число. Найти $\lim_{n \to \infty} n^k e^{-n}$ (строго доказать ответ).

(Указание. Сначала получите с помощью формулы (3) неравенство $e^n > n^{k+1}/(k+1)!$.)